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A brief derivation is given of the acoustic wave equation describing the propagation
of sound in a unidirectional shear flow. This equation has been solved exactly in only
one instance, namely a linear velocity profile; in the present paper a second exact
solution is given, for the exponential velocity profile, which represents a boundary
layer with weak suction at a high Reynolds number. The acoustic wave equation
has a critical layer where the Doppler shifted frequency vanishes, and this corre-
sponds to a regular singularity; another regular singularity corresponds to the free
stream and the sound field consists either of propagating waves or of surface waves,
showing that the critical layer can act as an absorbing layer. Analytical continua-
tion is used to cover the whole flow region, from the wall boundary layer to the free
stream; the appropriate boundary, radiation and stability conditions are discussed,
and the acoustic pressure is plotted as a function of distance from the wall for several
combinations of frequency, wavenumber parallel to the wall and low Mach number
free-stream velocity; the combination of solutions appropriate to rigid and impedance
walls is also plotted. The solutions are expressible in terms of Bessel functions only
when the critical layer is in the free stream; when the critical layer is in the bound-
ary layer, or when there is no critical layer, the solutions require an extension of the
Gaussian hypergeometric equation, in which one of the three singularities is irregu-
lar; its solutions are extensions of Gaussian hypergeometric and Mathieu functions,
whose general properties are discussed elsewhere.
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1. Introduction

The propagation of sound in shear flows has been studied mostly by numerical and
approximate analytical methods, with three motivations in mind: (i) propagation in
ducts containing a shear flow (Pridmore-Brown 1958; Tack & Lambert 1965; Mungur
& Gladwell 1969; Mungur & Plumblee 1969; Hersh & Catton 1971; Ko 1972; Evers-
man & Beckenmeyer 1972; Swinbanks 1975; Mani 1980; Ishii & Kakutani 1987); (ii)
effect of boundary layers on sound near a wall (Shankar 1971, 1972a, b; Eversman
1971; Mariano 1971; Almgren 1976; Goldstein 1979, 1982; Myers & Chuang 1983;
Hanson 1984); and (iii) effect of a laminar shear layer on sound transmission from a
jet (Graham & Graham 1968; Balsa 1976a, b; Koutsoyannis et al . 1980). Concerning
(ii) and (iii), besides the change in directivity due to laminar shear layers (Munt
1977) there is spectral broadening in turbulent flows (Lighthill 1953; Schmidt &
Tilmann 1970; Ho & Kovasnay 1976; Campos 1978a, b, 1983a). There are no exact
solutions of the acoustic wave equation in a turbulent flow, and even for a laminar
unidirectional flow, only one exact solution has been published, namely for a linear
velocity profile. In order for the velocity to remain bounded, the linear velocity profile
is usually matched to a uniform velocity, to represent a boundary layer (Goldstein
& Rice 1963; Scott 1979; Koutsoyannis 1980) on an infinite, or a semi-infinite (Jones
1978) plate, the latter involving an edge effect; the linear velocity profile has also
been used to match two dissimilar uniform streams, providing a model of a ‘simple’
shear layer of finite thickness (Jones 1977), which is more sophisticated than the vor-
tex sheet representation (Miles 1961). In the present paper a second exact solution
of the acoustic wave equation in a unidirectional shear flow is given, for the case of
an exponential velocity profile.

The acoustic wave equation has critical layers where the Doppler shifted frequency
vanishes. There are many more instances of critical layers for waves in inhomoge-
neous and moving media, e.g. gravity (Booker & Bretherton 1966; Bretherton 1967;
Turner 1973; Lighthill 1978), inertial (Greenspan 1968), hydromagnetic (McKenzie
1973; Eltayeb 1977; Campos 1983b, 1987a, 1988a, 1998) and instability (Lin 1955;
Drazin & Reid 1981) waves; critical layers also occur in dissipative media at rest,
e.g. for acoustic waves in the presence of viscosity (Yanowitch 1967; Campos 1983c),
and thermal gradients and conduction (Lyons & Yanowitch 1974; Campos 1983d)
and hydromagnetic waves in the presence of Ohmic electrical resistance (Campos
1983c, 1988b, 1990, 1993a, b) and Hall currents (McKenzie 1979; Campos & Isaeva
1992). Although some discussions of sound in shear flows do mention ‘turning points’
(e.g. Balsa 1976a, b), the existence of critical layers passes often unmentioned. For
example, a linear velocity profile always has a critical layer, and if it is matched to
a uniform stream, the critical layer will still exist if the Doppler shifted frequency
is negative in the free stream. The same condition indicates whether a critical layer
occurs for sound in an exponential shear flow. The main differences between the two
cases are that (i) in a linear shear flow the vorticity is constant, and if it is matched
to a uniform stream it jumps to zero across the matching point; and (ii) in an expo-
nential shear flow the vorticity decays smoothly from the wall to the free stream.
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In both cases there are two parameters in the velocity profile, allowing independent
choice-free stream velocity and boundary layer thickness. The exponential shear flow
is perhaps more realistic, in that it is an exact solution of the steady Navier–Stokes
equation, with uniform wall suction, namely the asymptotic suction profile (Schlicht-
ing 1951). The suction becomes negligible at a high Reynolds number, i.e. for small
viscosity; this is consistent with the neglect of viscosity, and other dissipative effects
(e.g. thermal conduction) in the acoustic wave equation.

The present problem may also be considered from the point of view of stability
of a shear flow (Lin 1955; Drazin & Reid 1981). The necessary conditions of stabil-
ity of an inviscid incompressible shear flow are simple (Rayleigh 1880): any shear
flow without inflection points is stable (e.g. the exponential). The stability crite-
ria are less straightforward when generalizing to viscous incompressible shear flows.
The instability waves, or Orr–Sommerfeld (Orr 1907; Sommerfeld 1908) waves in a
viscous incompressible shear flow, become unstable beyond a critical Reynolds num-
ber, which signals the beginning of a complex process of transition to turbulence
(Schlichting 1951). There are few exact solutions to the Orr–Sommerfeld equation
in its original, or simplified Tollmien–Schlichting (Tollmien 1929; Schlichting 1933),
forms. Both of these linear wave equations, describing the small amplitude distur-
bances of an incompressible viscous flow, are of the fourth order; neglecting viscosity
leads to a second-order equation for the stability of an incompressible shear flow,
known as Rayleigh’s equation (Rayleigh 1880). The present paper considers inviscid
but compressible perturbations. Thus the same fundamental wave equation specifies
(i) the propagation of non-dissipative sound waves of small amplitude in a shear
flow; and (ii) the linear stability of an inviscid compressible shear flow. The method
of solution of the wave equation is different: (i) the stability is best approached by an
initial value problem, e.g. as for a linear shear flow (Jones 1977, 1978); (ii) the sound
propagation can be approached as a boundary-value problem, with eigenvalues and
eigenfunctions in a finite domain like a duct (Mohring et al . 1983), or a continuous
spectrum in a semi-infinite domain like a wall boundary layer (present case). The
sound propagation and compressible stability problems are related, not only math-
ematically but also physically, e.g. it has been shown (Bechert & Pfizenmaier 1975)
that the transition from laminar to turbulent flow can be triggered by sound pulses
with an energy input much smaller than that associated with changes in the flow
structure. The aim in the present paper is to concentrate on sound propagation in a
shear flow, rather than the triggering of instabilities by sound, i.e. the non-resonant
part of the spectrum. Nevertheless, it is worth noting that the stability problem for
an inviscid incompressible exponential shear layer can be solved in terms of Gaussian
hypergeometric functions (Hughes & Reid 1965); the present case of a compressible
inviscid shear layer requires the introduction of a new class of special functions, which
may be called the extended hypergeometric type since they satisfy a second-order dif-
ferential equation, with two regular and one irregular singularities. The designation
extended hypergeometric function is intended to distinguish it from a different case,
namely the generalized hypergeometric functions (Bailey 1935; Erdelyi 1953), which
have three regular singularities and satisfy differential equations of order higher than
the second. The consideration of the singularities of the wave equation is important,
since it specifies the wave field in the neighbourhood of the critical layer, and also
asymptotically at infinity, i.e. in the free stream or far below the wall (which may
affect the flow region).
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The acoustic wave equation in a linear shear flow has two singularities: a regular
one at the critical layer and an irregular one at infinity, where the velocity diverges.
Thus by expanding around the critical layer, a solution with infinite radius of conver-
gence is obtained which can be expressed alternatively in terms of a parabolic cylin-
der (Goldstein & Rice 1973), Whittaker or confluent hypergeometric (Jones 1977)
functions. In the case of the exponential shear flow, the acoustic wave equation has
three singularities, namely (i) at the critical layer; (ii) at the free stream; and (iii)
at the opposite limit of high vorticity. The latter singularity is irregular, in contrast
to the former two, which are regular. Thus the problem cannot be reduced (Ince
1926) into a confluent hypergeometric equation, nor even to a Gaussian hypergeo-
metric equation, which has three regular singularities (Whittaker & Watson 1927).
It has a higher level of complexity, between the Mathieu and Hill equations, in the
sense that (i) they all have two regular singularities; (ii) the irregular singularity
is of degree (Forsyth 1902) one in Mathieu’s equation, degree two in the present
case and of an arbitrary degree for Hill’s equation. The present case can be called
an extended hypergeometric equation, because it retains some properties from the
particular Gaussian hypergeometric case, e.g. the extended hypergeometric equa-
tion transforms into itself under some of the six coordinate transformations of the
Kleinian group (Erdelyi 1953), which leave invariant the three singular points 0, 1,∞.
Thus solutions can be obtained by the Frobenius–Fuchs method (Forsyth 1927) near
(i) the free stream, showing the existence of (a) outward and inward propagating
waves, or (b) of surface guided modes; and (ii) the critical layer where there is a
logarithmic singularity, and a jump in wave amplitude, due to partial absorption
of the wave. The Frobenius–Fuchs method fails completely near the irregular sin-
gularity, where the method of normal integrals yields an asymptotic solution, and
the solution using infinite determinants (Forsyth 1902) can be obtained directly, or
by reduction to Hill’s equation. It is shown, however, that there are cases for which
the latter solution is not needed, because the whole flow region can be covered by
analytic continuation, involving one pair of solutions of type (i) and/or one pair
of solutions of type (ii). These two sets of solutions are illustrated by plots of the
acoustic pressure as a function of distance from the wall for various combinations of
wave frequency, horizontal wavenumber, shear-layer thickness and free-stream Mach
number. The present paper concentrates on the physical properties of sound in an
exponential shear flow, and relegates to a related future paper some mathematical
aspects of the solution of the extended hypergeometric differential equation.

The paper is organized as follows: in § 2, the existence of a critical layer, for the
acoustic wave equation in a unidirectional shear flow is demonstrated in general, and
for linear and exponential velocity profiles, and its significance is discussed in terms
of the ray approximation and exact solutions; in § 3, besides the regular singularity at
the critical layer, we show that the wave equation has another regular singularity in
the free stream, and an irregular singularity below the wall, so that analytic contin-
uation between pairs of solutions covers the whole flow region; § 4 shows that using
these three pairs of solutions it is always possible to apply boundary conditions, and
plot the acoustic pressure as a function of distance from the wall, for all combinations
of parameters of the problem, namely, wave frequency and horizontal wavenumber,
shear-layer thickness, free-stream velocity and sound speed; in § 5, the calculation
and plots of the solutions around the free stream, which represents either outward
or inward propagating waves or surface (guided) modes, are considered first; then in
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Figure 1. Sound wave of frequency ω and horizontal wavenumber k in an exponential shear
flow.

§ 6, since the former solutions have their radius of convergence limited by the critical
layer, next solutions are obtained which are valid around the critical level, where
waves can be absorbed; in § 7 in the plots, the acoustic pressure is put into a dimen-
sionless form by dividing by its value in the free stream, and rigid and impedance wall
conditions are used; finally, in § 8, we discuss an exceptional case, when a solution in
terms of Bessel functions applies over the whole flow region, when the two regular
singularities coincide, i.e. when the critical layer lies in the free stream. The solution
of the extended hypergeometric equation, and the mathematical properties of the
extended hypergeometric functions, which appear in the present acoustic problem,
are discussed in more detail in a future paper.

Part I. General properties

Following the introduction, the general properties of sound in a unidirectional shear
flow are first discussed, with particular reference to the exponential profile, namely:
(§ 2) the existence of a critical layer and its physical implications; (§ 3) the sets of
solutions of the wave equation and analytic continuation between them; (§ 4) some
possible choices of conditions to determine the constants of integration, e.g. radiation
or boundedness conditions in the free stream; absence or presence of logarithmic
singularity at the critical layer; and moving, impedance or rigid walls.

2. Existence of a critical layer

The two-dimensional linearized inviscid momentum equations are
du
dt

+ U ′v + ρ−1 ∂p

∂x
= 0, (2.1 a)

dv
dt

+ ρ−1 ∂p

∂y
= 0, (2.1 b)

where u, v are the components of the acoustic velocity, p is the acoustic pressure, ρ
is the mean flow mass density and d/dt is the material derivative (2.2 a):

d
dt
≡ ∂

∂t
+ U

∂

∂x
, (2.2 a)

U ≡ U(y)ex (2.2 b)
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for (figure 1) unidirectional shear flow (2.2 b), with velocity U(y), in the x-direction.
In adiabatic conditions, the equation of continuity reads (2.3 a)

c−2 dp
dt

+ ρ′v + ρ

(
∂u

∂x
+
∂v

∂y

)
= 0, (2.3 a)

c2 ≡
(
∂po
∂ρ

)
s
, (2.3 b)

where c is the sound speed, calculated from the mean flow pressure p0. For a low
Mach number mean flow, the sound speed c and mass density ρ do not depend on
distance from the wall, unlike the mean flow velocity U(y) without restriction of
the Mach number, if the mean flow is homentropic, s = const., since the pressure
is also constant, the equation of state implies that c and ρ are constant too. In
(2.1 a), (2.3 a), primes denote derivative with regard to y of mean state variables,
e.g. U ′ ≡ dU/dy, in the commutation rules:

d
dt

∂

∂x
=

∂

∂x

d
dt
, (2.4 a)

d
dt

∂

∂y
=

∂

∂y

d
dt
− U ′ ∂

∂x
; (2.4 b)

bearing these in mind, (2.1), (2.3 a) can be eliminated for the acoustic pressure,
leading to the wave equation (Pridmore-Brown 1958; Lilley 1973; Mohring et al .
1983) in a unidirectional shear flow:

d
(
c−2 d2p

dt2
−∇2p

)
dt

+ 2U ′
∂2p

∂x∂y
= 0. (2.4 c)

In the absence of shear flow U ′ = 0, this simplifies to the convected wave equation, in
brackets, which is of second order; the interaction of sound with vorticity raises the
acoustic wave equation to the third order, by coupling acoustic waves and vortical
modes. Since the mean state does not depend on time and longitudinal coordinates,
it is convenient to use a double Fourier integral representation:

P (x, y, t) =
∫∫ +∞

−∞
P (y; k;ω)ei(kx−ωt) dkdω, (2.5)

where P (y; k, ω) denotes the acoustic pressure spectrum, for a wave of frequency ω
and longitudinal wavenumber k, at a transverse position y. Substituting (2.5) into
(2.4 c) yields the acoustic wave equation for the acoustic pressure spectrum:

(ω − kU)P ′′ + 2kU ′P ′ + (ω − kU)[(ω − kU)2/c2 − k2]P = 0, (2.6)
valid for a low Mach number unidirectional shear flow (Mohring et al . 1983) or for
an homentropic mean flow without restriction on the Mach number.

The coefficient of P ′′ in (2.6) is the Doppler shifted frequency (2.7 a)
ω∗(y) ≡ ω − kU(y), (2.7 a)
ω∗(yc) = 0, (2.7 b)

and where it vanishes (2.7 b), a critical layer y = yc exists. In the case of a linear
velocity profile (2.8 a) with vorticity q,

U(y) = −qy, (2.8 a)
yc = ω/kq, (2.8 b)

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


On the acoustics of an exponential boundary layer 2341

a critical layer always exists (2.8 b). If the linear velocity profile is matched to a
uniform stream (2.9 a),

U(y) =
{
V y/h, if 0 6 h,
V, if y > h, (2.9 a)

q(y) =
{ −V/h, if 0 6 h,

0, if y > h, (2.9 b)

the vorticity (2.9 b) vanishes in the uniform stream, and a critical layer exists if yc 6
h, i.e. if the Doppler shifted frequency is non-positive in the free stream ω−kV 6 0.
The same condition applies (figure 1) to a unidirectional exponential shear flow:

U(y) = V (1− e−y/L), (2.10 a)

q(y) = −(V/L)e−y/L, (2.10 b)

for which the free-stream velocity V and shear-layer thickness L can be chosen inde-
pendently, and the vorticity decays smoothly, from −V/L at the wall, to zero in the
free stream. The Doppler shifted frequency,

ω = ω∗(0) > ω∗(y) = ω − kV + kV e−y/L > ω∗(∞) = ω − kV, (2.11)

is maximum at the wall, where it equals the wave frequency ω, and minimum at the
free stream, where the Doppler shift is largest; the critical layer is located at

yc = −L log(1−Ω), (2.12 a)
Ω ≡ ω/kV, (2.12 b)

showing that there are two cases: (i) if the Doppler shifted frequency is positive in
the free stream ω > kV , then it is positive everywhere, and there is no critical layer,
namely the yc complex in (2.12 a) for Ω > 1; (ii) if the Doppler shifted frequency
is negative in the free stream ω < kV , then, since it is positive at the wall, it must
vanish at an intermediate position, namely yc is real for Ω < 1. The intermediate
case Ω = 1 would correspond to a critical layer in the free stream (see § 8). In
the preceding discussion it has been assumed that the horizontal wavenumber is
positive k = |k| > 0, corresponding to propagation in the positive x-direction, i.e.
parallel to the mean flow, so that the Doppler shifted frequency cannot exceed the
wave frequency, ω∗(y) = ω − |k|U(y) < ω; in the opposite case k = −|k| < 0, of
propagation in the negative x-direction, the Doppler shifted frequency exceeds the
wave frequency ω∗(y) = ω+ |k|U(y) > ω; thus it never vanishes, and no critical layer
can exist.

To describe the acoustics of the exponential boundary layer, taking into account
the possible existence of a critical layer, requires an exact solution of the acoustic
wave equation (2.6), for (2.10 a) the exponential shear flow:{

1− e−y/L

1−Ω
}
P ′′ − 2

L

{
e−y/L

1−Ω
}
P ′

+
[

1− e−y/L

1−Ω
]{[

(1−Ω + e−y/L)
V

c

]2

− 1
}
k2P = 0. (2.13)

The form of the coefficients suggests the change of independent variable (2.14 a),
which measures distance from the wall in the same scale as the vorticity (2.10 b), and
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has a coefficient such that the critical layer (2.12 a) lies at position unity ζ(yc) = 1,
namely

ζ =
e−y/L

1−Ω = e−(y−yc)/L, (2.14 a)

p(y; k, ω) = f(ζ); (2.14 b)

thus (2.13) leads to a differential equation with polinomial coefficients:

(1− ζ)ζ2f ′′ + ζ(1 + ζ)f ′ + (1− ζ){Λ2(1− ζ)2 −K2}f = 0, (2.15)

which involves two dimensionless parameters

Λ ≡ (ω − kV )L/c, (2.16 a)
K ≡ kl, (2.16 b)

namely the Doppler shifted frequency (2.16 a) and horizontal wavenumber (2.16 b).
The differential equation (2.15) has cubic polynomial coefficients, whose degree can
be reduced by one unit, via the change of dependent variable (2.17 a):

f(ζ) = ζϑg(ζ), (2.17 a)

ζϑ ∼ e−ϑy/L, (2.17 b)

which is equivalent to the introduction of an exponential factor (2.17 b), where the
constant ϑ may be chosen at will. Substituting (2.17 a) in (2.15) yields

(1− ζ)ζ2g′′ + ζ{(1 + 2ϑ) + ζ(1− 2ϑ)}g′
+ {Λ2(1− ζ)3 + (ϑ2 − ϑ−K2)(1− ζ) + ϑ(1 + ζ)}g = 0; (2.18)

if ϑ is chosen so as to cancel the terms in the last curly brackets, which are indepen-
dent of ζ,

Λ2 + ϑ2 −K2 = 0, (2.19 a)

ϑ =
√
K2 − Λ2, (2.19 b)

then the differential equation (2.18) can be divided by ζ, and its coefficients become
quadratic:

(1− ζ)ζg′′ + {(1 + 2ϑ) + ζ(1− 2ϑ)}g′ + {2ϑ− Λ2(1− ζ)(2− ζ)}g = 0, (2.20)

with the leading coefficient as in the Gaussian hypergeometric equation.
Before proceeding to solve exactly the differential equation (2.20), it is worth while

considering the leading term of the solution in the neighbourhood of the free stream
y =∞ or ζ = 0 by (2.14 a). Writing the differential equation (2.20) in the form

ζ2g′′ + ζr0(ζ)g′ + s0(ζ)g = 0, (2.21)

where

r0(ζ) ≡ 2ϑ+ (1 + ζ)/(1− ζ), (2.22 a)

s0(ζ) ≡ ζ[2ϑ/(1− ζ)− Λ2(2− ζ)], (2.22 b)

are analytic at ζ = 0, it follows that the latter is a regular singularity, and a power
series solution exists in its vicinity:

g(ζ) = ζσ
∞∑
n=0

an(σ)ζn. (2.23)
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The leading term ζσ = e−σy/L is specified by σ, which is a root of the indicial
equation

0 = σ(σ − 1) + σr0(0) + s0(0) = σ(σ + 2ϑ). (2.24)
Thus σ = 0,−2ϑ, and the two particular integrals scale (2.14 b), (2.17 a), (2.23) as

P±(y →∞; k, ω) ∼ ζϑ+σ = ζ±ϑ ∼ e∓ϑy/L, (2.25)
in the neighbourhood of the free stream, where the mean flow velocity is V = U(∞)
in the free stream, and thus the transverse wavenumber k̄, in the y-direction, is given
by

k̄ =
√

(ω − kV )2/c2 − k2. (2.26)
Thus the acoustic pressure spectrum (2.5), in the ray limit of wavelength that is
small compared to the length-scale of change of the mean flow velocity, is given by

P (y →∞; k, ω) ∼ e±ik̄y; (2.27)
the ray limit applies in the free stream, as can be confirmed by comparing (2.27) and
(2.25), namely

k̄ = −iϑ/L = −i
√
k2 − Λ2/L2, (2.28)

coincides with (2.26) when (2.19 b), (2.16) are used. Thus the leading term of the
exact acoustic field (2.14 b), (2.17 a), (2.23) in the neighbourhood of the free stream,
is the ray solution (2.26), (2.27). If the transverse wavenumber in the ray limit is
imaginary k̄ = ±i|k̄|, then ϑ = ik̄L = ∓|k̄|L is real, all coefficients of the wave
equation (2.20) are real and no propagating waves exist; the wave field scales as
exp(∓|k|y) as y → ∞ and a bounded acoustic field (choice of ‘minus’ sign) implies
surface modes in the boundary layer; this is the case when (2.26) is imaginary, i.e.
|ω − kV | < kc or |Ω − 1| < 1/M using (2.12 b) and the Mach number in the free
stream

M2 � 1, M ≡ V/c, (2.29)

which is restricted to low values, M 6 1
3 , by the assumption of incompressible mean

flow. The condition Ω < 1 + 1/M with M = 1
3 , shows that only surface waves

are possible for Ω < 4 ≡ Ω∗, i.e. including all cases where a critical layer exists
Ω 6 1. Propagating waves are possible in the opposite case of real k̄, imaginary ϑ
and Ω > 1 + 1/M > Ω∗, but this can occur only in the absence of a critical layer
Ω > 1. These conclusions are summarized in the table:

waves propagating surface
condition |Ω − 1| > 1/M |Ω − 1| < 1/M
frequency Ω > 1 + 1/M ≡ Ω∗ Ω < 1 + 1/M ≡ Ω∗
spectrum ω > k(V + c) ≡ ω∗ ω < k(V + c) ≡ ω∗
critical layer never possible (Ω 6 1)

(2.30)
and also in figure 2, where the spectrum is split into propagating waves at ‘high’ fre-
quencies and surface waves at ‘low’ frequencies, separated by the ‘cut-off frequency’:

Ω∗ ≡ 1 + 1/M, (2.31 a)
ω∗ ≡ k(V + c). (2.31 b)
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Figure 2. The spectrum is split into propagating waves and surface modes, respectively, above
and below a cut-off frequency calculated for free stream.

This ‘cut-off frequency’ is not comparable to those applying to the acoustics of ducts
(Ballantine 1927; Tsien 1952; Eisenberg & Kao 1971; Nayfeh et al . 1975; Campos
1984, 1985a, 1986a, b, 1987b; Campos & Lau 1996a, b) or to waves in an atmosphere
(Moore & Spiegel 1964; Lighthill 1978; Campos 1983d, 1985b, 1987a, 1991; Campos
& Saldanha 1991); the latter cut-off frequencies are determined by lengthscales of
variations of properties of the media.

3. Solutions of the wave equation

The radius of convergence of the solution (2.23) around the free stream |ζ| < 1 is
limited by the critical layer ζ(yc) = 1, when the latter exists. In order to study
the behaviour of the wave field near the critical layer, the independent variable is
changed to (3.1 a)

ξ = 1− ζ, (3.1 a)
g(ζ) = h(ξ), (3.1 b)

so that the differential equation (2.20) becomes

(1− ξ)ξh′′ − {2 + ξ(1− 2ϑ)}h′ + {2ϑ− Λ2ξ(1 + ξ)}h = 0. (3.2)

Writing (3.2) in the form

ξ2h′′ + ξr1(ξ)h′ + s1(ξ)h = 0, (3.3)

where

r1(ξ) ≡ −2 + ξ(1− 2ϑ)
1− ξ , (3.4 a)

s1(ξ) ≡ 2ϑ− Λ2ξ(1 + ξ)
1/ξ − 1

, (3.4 b)

are analytic at ξ = 0, it follows that the critical layer (ζ = 1 or y = yc) is a regular
singularity, and a solution exists in the form

h(ξ) = ξσ
∞∑
n=0

bn(σ)ξn, (3.5)

where the indices are the roots of

0 = σ(σ − 1) + σr1(0) + s1(0) = σ(σ − 3). (3.6)
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Since the indices differ by the integer 3, one particular integral is a series starting at
the third power:

P1(y; k, ω) ∼ ξ3 = {1− exp[(yc − y)/L]}3 ∼ [(yc − y)/L]3, (3.7)
and the other

P2(y; k, ω) ∼ ξ3 log ξ +O(1), (3.8)
has a logarithmic term. It is clear that (3.7) vanishes as ξ → 0, at the critical layer,
and (3.8) is finite. In order to interpret the logarithmic term in (3.8) it is usual
(Booker & Bretherton 1976; McKenzie 1979), in the absence of dissipation (fluid
viscosity and thermal conduction in this case), to give the frequency a small positive
imaginary part ω̄ = ω + iε, to simulate the onset of an instability exp(−iω̄t) =
exp(−iωt) exp(εt) for ε > 0. In the case of a stable system, which has no poles in
the upper complex ω-plane, the path of integration along the real ω-axis in (2.5)
can be shifted to +iω, giving a zero wave field for t < 0, as required by causality.
An incompressible inviscid shear layer is stable, but this may not be the case in the
compressible case, i.e. sound may trigger flow instabilities, which in turn amplify the
sound field (Jones 1977); this would be represented by the poles of the integrand
in the upper complex ω-plane. Since the present paper is not concerned with the
instabilities, but only with the non-resonant part of the spectrum, one may proceed
to substitute ω̄ = ω + iε in (2.12 a), so that the location of the critical layer is
shifted to

ȳc ≡ −L log
(

1− ω̄

kV

)
= −L log

(
1− ω

kV
− iε
kV

)
∼ yc +

iεL
kV − ω , (3.9)

since the critical layer exists for kV > ω, the imaginary part of ȳc is positive, then
Im{(y − ȳc)/L} < 0, and in the logarithmic term in (3.8), the argument is −iπ as
y → yc − 0, namely

log ξ ∼ log{(y − yc)/L} =
{

log{|y − yc|/L}, if y > yc,
log{|y − yc|/L} − iπ, if y < yc.

(3.10)

Thus there is a phase jump of π rad (180◦) when crossing the critical layer from the
wall to the free stream, and a jump of −π in the opposite direction.

The differential equation (2.20) has a third singularity at infinity ζ =∞, which is
mapped to the origin η = 0 by the change of variable

η = 1/ζ, (3.11 a)
j(η) = g(ζ), (3.11 b)

which transforms (2.20) to

η2(1− η)j′′ + η{3− 2ϑ+ η(2ϑ− 1)}j′ +
{

2ϑ− Λ2
(

2− 3
η

+
1
η2

)}
j = 0. (3.12)

Writing this equation in the form
η2j′′ + r∞(η)ηj′ + s∞(η)j = 0, (3.13)

where

r∞(η) =
3− 2ϑ+ η(2ϑ− 1)

1− η (3.14 a)

s∞(η) =
2ϑ− Λ2

(
2− 3

η
+

1
η2

)
1− η , (3.14 b)
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Figure 3. The ζ-plane of flow region y > 0 is covered by three pairs of solutions, valid near the
free stream and critical layer, which are regular singularities, and near the irregular singularity,
in the limit of strong vorticity, below the wall.

it follows that, since Ω 6= 1 in (2.12 a) and Λ 6= 0 in (2.16 a), the function (3.14 b) is
not analytic at η = 0, and the latter is an irregular singularity. Note that if Λ = 0,
then (2.20) would have been a Gaussian hypergeometric equation, which has regular
singularities at ζ = 0, 1,∞. The present equation is of the extended hypergeometric
type, in the sense that it differs from the hypergeometric type, in that the coefficient
of g has terms of O(ζ) and O(ζ2). Thus the present equation is of a higher degree
than Mathieu’s equation, which has a term of O(ζ) in Lindeman’s form (Whittaker
& Watson 1927), but of a lower degree than Hill’s equation, which has terms of
all orders O(ζn), with n integer (Ince 1926). This question is pursued further in a
future paper, where the mathematical properties of the extended hypergeometric
equation are discussed, including behaviour at infinity. It can be shown that (i)
the Frobenius–Fuchs method fails to give any particular integral, i.e. there is no
power series solution; (ii) a solution in the form of a normal integral exists, but it
provides an asymptotic expansion, i.e. it does not converge as a descending series;
(iii) Laurent series solutions exist, but they involve infinite systems of equations, and
infinite determinants, as for Hill’s equation.

Concerning the present acoustic problem, the aim is to obtain the simplest set
of solutions, which covers the whole flow region, for every possible combination
of parameters. The differential equation (2.20) has singularities at the points ζ =
0, 1,∞, which are the fixed or invariant points (Erdelyi 1953) of the Kleinian group
of transformations:

ζ → 1− ζ, 1
ζ
, 1− 1

ζ
,

1
1− ζ ,

ζ

1− ζ . (3.15)
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Thus a pair of solutions in each of these six variables could be considered, i.e. two
pairs in the neighbourhood of each singularity; it follows by analytic continuation
(figure 3) that any solution is a linear combination of any pair of solutions. If the
aim is to cover the whole complex ζ-plane, a pair of solutions is needed in the
neighbourhood of each singularity, namely using ζ or ζ/(1 − ζ) near ζ = 0, and
1 − ζ or 1 − 1/ζ near ζ = 1, and 1/ζ or 1/(1 − ζ) near ζ = ∞. In the case of the
Gaussian hypergeometric equation, it transforms into itself via any transformation
of the Kleinian group (3.15), because the three fixed points ζ = 0, 1,∞ are all
regular singularities. In the present case, of the extended hypergeometric equation,
the fixed point ζ = ∞ is an irregular singularity, and the equation transforms into
itself (2.20), (3.2) only for one change of variable, namely (3.1 a), which interchanges
the two regular singularities ζ = 0, 1. The remaining changes of variable in (3.15),
i.e. all but the first, lead to a differential equation which is no longer of the extended
hypergeometric type, e.g. (3.12) for (3.11 a), which is the second change of variable in
(3.15). As a further example, consider a second pair of solutions in the neighbourhood
of the critical layer, i.e. distinct from (3.1 a), (3.2), (3.5), (3.6); among the changes
of variable in (3.15), the choice distinct from (3.1 a) is

χ = 1− 1
ζ

= 1− η, (3.16 a)

`(χ) = j(η), (3.16 b)
which transforms equation (3.12) to

χ(1− χ)4`′′ − (1− χ)3{2 + (1− 2ϑ)χ}`′ + {2(ϑ− Λ2)(1− χ)2 + 3Λ2}` = 0,
(3.17)

which is no longer of the extended hypergeometric type. The critical layer χ =
0 is still a regular singularity, and the indicial equation σ(σ − 3) = 0 the same;
the implication is that in both cases a logarithmic singularity exists at the critical
layer (3.8). It may be expected that both solutions, of (3.2) and (3.17), have similar
behaviour in the neighbourhood of the regular singularity, ζ = 1, ξ = 0 and χ = 0,
but that their radius of convergence is different, namely: (i) for (3.2), the singularity
nearest to ζ = 1, ξ = 0 is ζ = 0, ξ = 1, which is regular, and thus the radius
of convergence is unity |ξ| < 1, as will be confirmed subsequently (see § 6); (ii) for
(3.17), the singularity nearest to χ = 0, ζ = 1 is χ = 1, ζ = ∞, which is irregular,
and thus the solution about χ = 0 cannot represent a solution near χ = 1, and the
radius of convergence must be less than unity. Thus the former solution has a larger
radius of convergence. In conclusion, a good choice of the three pairs of solutions to
cover the whole ρ-plane is those of (2.20), (3.2) and (3.12).

Denoting by P∗ and P∗∗ two linearly independent solutions of the last differential
equation (3.12), the acoustic pressure is given by a linear combination:

P (y; k, ω) = C∗P∗(y; k, ω) + C∗∗P∗∗(y; k, ω), (3.18 a)
where C∗, C∗∗ are arbitrary constants; the solution is valid for

−1 <
1
ζ

= (1−Ω)ey/L = exp
{
y − yc

L

}
< 1. (3.18 b)

The other pair of solutions (3.7), (3.8) about the critical layer, specifies the acoustic
pressure

P (y; k, ω) = C1P1(y; k, ω) + C2P2(y; k, ω) (3.19 a)
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in the region

−1 < 1− ζ = 1− e−y/L

1−Ω = 1− exp
{
−y − yc

L

}
< 1; (3.19 b)

the solution (2.25) about the free stream, specifies the acoustic pressure

P (y; k, ω) = C+P+(y; k, ω) + C−P−(y; k, ω) (3.20 a)

in the region

−1 < ζ =
e−y/L

1−Ω = exp
{
−y − yc

L

}
< 1. (3.20 b)

The three solutions (3.18 a), (3.19 a), (3.20 a) are valid in the overlapping regions
(3.18 b), (3.19 b), (3.20 b), and thus are (figure 3) analytic continuations of each other.
It follows that any of these six functions P+, P−, P∗, P∗∗, P1, P2 is a linear combina-
tion of any pair (P+, P−), (P∗, P∗∗), (P1, P2), with definite coefficients

P+ P− P1 P2 P∗ P∗∗
P+ 1 0 C+1 C+2 C+∗ C+∗∗
P− 0 1 C−1 C−2 C−∗ C−∗∗
P1 C1+ C1− 1 0 C1∗ C1∗∗
P2 C2+ C2− 0 1 C2∗ C2∗∗
P∗ C∗+ C∗− C∗1 C∗2 1 0
P∗∗ C∗∗+ C∗∗− C∗∗1 C∗∗2 0 1

(3.21)

which can be determined by comparing the two sides at two points. For example,
the coefficients in the relation

P1(y; k, ω) = C1+P+(y; k, ω) + C1−P−(y; k, ω) (3.22)

can be determined by solving at two points y1, y2 in the intersection of the regions
of validity:[
C1+
C1−

]
{P+(y1)P−(y2)− P−(y1)P+(y2)} =

[
P−(y2) −P−(y1)
−P+(y2) P+(y1)

] [
P1(y1)
P1(y2)

]
. (3.23)

Using the relations (3.21), of type (3.22), with definite coefficients like (3.23), any
pair of constants of integration (C1, C2) in (3.19 a), C± in (3.20 a) and (C∗, C∗∗) in
(3.18 a) can be expressed in terms of any other pair; for example, if C± are given,
then C1, C2, C∗, C∗∗ can be determined using the coefficients in (3.21). It follows that
there are only two independent arbitrary constants of integration, as there should be
for the solution of a second-order differential equation.

4. Boundary and radiation conditions

Thus two boundary conditions are needed to determine all arbitrary constants of
integration in (3.18 a), (3.19 a), (3.20 a), and it does not matter where these condi-
tions are specified, because there are connecting formulae (3.21) across the whole
flow region. The examples of possible boundary conditions which will be given next
apply at the free stream, at the critical layer and at the wall. Concerning the vicinity
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of the free stream (3.20 a), if (i) |Ω − 1| > 1/M , there are outward P+ and inward
P− propagating waves, and a radiation condition choosing the former (latter) sets
C− = 0 (C+ = 0); and if (ii) |Ω − 1| < 1/M , there are unstable P+ and surface P−
waves, so that the pressure field is bounded only if C+ = 0. Concerning the vicinity
of the critical layer (3.19 a), the latter exists (2.12 a) if Ω < 1, in which case (2.30)
only surface waves can be considered, implying that C+ = 0 6= C−; from (3.21) it
follows that the two components of the wave field (3.7), (3.8) in the neighbourhood
of the critical layer have coefficients C−C−1 and C−C−2, respectively, and thus the
logarithmic singularity at the critical layer cannot be avoided. In this case the critical
layer can act as a partially absorbing layer, extracting some energy from the wave
because there is an amplitude jump πC−C−2 due to the logarithmic singularity. For
propagating waves (2.30), no critical layer exists, and thus the logarithmic term (3.8)
is not singular. At the wall y = 0, it follows from the momentum equation (2.1 b),
(2.2 a) that

P ′(0; k, ω) = iρ[ω − kU(0)]V (0; k, ω), (4.1 a)

where for an exponential boundary layer, the flow velocity (2.10 a) vanishes at the
wall, but not the vorticity

P ′(0; k, ω) = iρωV (0; k, ω). (4.1 b)

If the wall is moving with normal velocity v(x, t), then its spectrum

V (0; k, ω) =
1

4π2

∫∫ +∞

−∞
v(x, t)e−i(kx−ωt) dxdt (4.1 c)

appears in the boundary condition (4.1 b). If instead the wall has an impedance Z
(4.2 a):

V (0; k, ω) = Z−1P (0; k, ω), (4.2 a)

ZP ′(0; k, ω) = iρωP (0; k, ω), (4.2 b)

the boundary condition is (4.2 b). A particular case is the rigid wall:

Z =∞, V (0; k, ω) = 0⇔ P ′(0; k, ω) = 0, (4.3)

for which the normal velocity is zero, and thus the normal derivative of the pressure
vanishes. The boundary condition at the wall specifies a relation between C∗ and C∗∗
in (3.18 a); the solution is made unique, by one more independent and compatible
conditions, e.g. a radiation or stability condition in the free stream or absence of
the logarithmic term in the neighbourhood of the critical layer. Taking the latter as
an example, the condition of absence of a logarithmic term near the critical layer
C2 = 0, implies by (3.21) that C∗ and C∗∗ are proportional to C1, so that their
ratio is a constant C∗/C∗∗ = const.; this relation, together with the linear relation
between C∗ and C∗∗ established by the boundary condition specified at the wall,
uniquely determines C∗ and C∗∗. In contrast, specifying a boundary condition near
the wall, and a radiation at infinity, implies that a logarithmic term will generally
exist at the critical layer.

Concerning the relation between the acoustic propagation problem and the stabil-
ity of the compressible shear flow, the following is an outline of how this question
can be addressed. Consider an incident sound wave from the free stream, namely

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2350 L. M. B. C. Campos and P. G. T. A. Serrão

C− = 0 in (3.20 a), with a given amplitude C+ 6= 0, so that the sound field is given
by

P (y; k, ω) = C+P+(y; k, ω) = C+{C1+P1(y; k, ω) + C2+P2(y; k, ω)}, (4.4 a)

where the second expression applies accross the critical layer, and generally involves
a logarithmic term, because C+C2+ 6= 0. If the second expression holds up to the
wall, the third pair of solutions is not needed, and the impedance boundary condition
(4.2 b) is independent of amplitude C+ 6= 0:

C1+P
′
1(0;ω, k) + C2+P

′
2(0;ω, k) = (iρω/Z){C1+P1(0;ω, k) + C2+P2(0;ω, k)}.

(4.4 b)

The frequency ω and horizontal wavenumber k could be taken in dimensionless form
(2.12 b), (2.16 b), and since the parameter (2.16 a) is involved in (4.4 b), the Mach
number M and modified impedance z ≡ Z/ρ also appear in the relation (4.4 b),
leading to

z ≡ Z/ρ, F (ω, k,M, z) = 0, (4.5)

which acts as a dispersion relation, and can be interpreted in two ways. First, for
sinusoidal perturbations in space, it indicates their evolution in time. Taking k to be
real, the roots of (4.5) are complex ω:

ω ≡ ωr + iωi, e−iωt = exp(−iωr) exp(ωit), (4.6 a)

implying that ωr ≡ Re(ω) is the frequency, and ωi ≡ Im(ω) is a growth rate in
time if ωi > 0, and a rate of decay if ωi < 0; thus neutral stability corresponds to
ωi = 0. Alternatively, for sinusoidal perturbations in time, their spatial evolution can
be determined. Taking ω to be real, the roots of (4.5) are complex k:

k ≡ kr + iki, eikx = exp(ikrx) exp(−kix), (4.6 b)

so that kr ≡ Re(k) is the wavenumber and ki ≡ Im(k) the spatial growth ki > 0
or decay ki < 0 rate; the neutral stability corresponds to ki = 0. In either case, the
neutral stability is specified by one of the equations

ωi(k,M, z) = 0, ki(ω,M, z) = 0, (4.7 a)

whose smallest root (for k and ω, respectively) can be plotted as a curve:

k∗(M, z) = 0, ω∗(M, z) = 0. (4.7 b)

Thus there will be a critical Mach number M∗, below which the shear flow is stable
with regard to any acoustic perturbation. The existence of a critical Mach number is
typical of shear flow stability problems. In the present case, the critical Mach number
depends on the wall impedance M∗(z), e.g. it could be different for a rigid wall
M∗(∞), for a reactive M∗(|R|) or an inductive M∗(i|R|) wall. Above the critical Mach
number M >M∗, there exist pairs of frequency and wavenumber (ω, k)∗ which excite
shear flow instabilities, i.e. they are the resonant modes of the acoustic spectrum. The
following analysis concerns the non-resonant acoustic spectrum, namely arbitrary
(ω, k) 6= (ω, k)∗ excluding the resonant pairs.

It remains to be specified which solutions need to be used for the various combi-
nations of parameters. Taking each solution in turn, and starting with the solution
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(3.20 a) near the free stream (i) if Ω < 1, it holds that y > yc above (3.20 b) the
critical layer (2.12 a); and (ii) if Ω > 1, it applies above the layer

y > y+ ≡ −L log(Ω − 1), (4.8)

and since y+ < 0 for Ω > 2, the latter case applies over the whole flow region. The
solution (3.19 a) near the critical layer diverges (3.19 b) for Ω > 1, and for Ω < 1
holds in the region

y > y− ≡ −L log{2(1−Ω)} = yc − L log 2 = yc − 0.693L, (4.9)

which includes the whole flow region when Ω < 1
2 , because then y− < 0. The solu-

tion (3.18 a), near the irregular singularity, holds in opposition to (3.19a), namely:
(i) if Ω < 1, it holds below the critical layer y < yc in (2.12 a); and (ii) if Ω > 1, it
holds below the layer (4.8):

y < y+ = −L log(Ω − 1), (4.10)

and since y+ < 0 for Ω > 2, in this case it holds nowhere in the flow region. In this
case Ω > 2, the solutions (3.18 a), (3.19 a) are not needed, because (3.20 a) covers
the whole flow region. Considering the three other frequency ranges, the appropriate
solutions are indicated in figure 4 and in the following table:

case pair of solutions

frequency range P± P1,2 P∗, P∗∗
2 < Ω 0 < y <∞ — —

1 < Ω < 2 y+ < y <∞ — 0 < y < y+
1
2 < Ω < 1 (yc < y <∞) y− < y <∞ 0 < y < yc
Ω < 1

2 (yc < y <∞) 0 < y <∞ (0 < y < yc)
(4.11)

Here (i) non-convergence is indicated by —; (ii) a solution which is valid, but not
needed, is indicated in parentheses; and (iii) the simplest solution, or combination of
solutions, which covers the whole flow region, is indicated without parentheses. The
conclusion is that: (i) for Ω > 2 or Ω < 1

2 the whole flow region is covered by one
pair of solutions, respectively P± and P1,2; (ii) two pairs can be used for 1

2 < Ω < 1,
namely (P±, P∗,∗∗) or (P1,2, P∗,∗∗), with the latter having a larger region of overlap;
and (iii) for 1 < Ω < 2 the pair (P±, P∗,∗∗) can be used. Note that in the last two
cases the solutions P∗,∗∗ in the neighbourhood of the essential singularity are needed;
they can be dispensed with by instead using expansions about one or more regular
points, so as to cover the region 0 < y < yc in case (ii), and 0 < y < y+ in case (iii).

Part II. Discussion of the solutions

The preceding pairs of solutions can be discussed, both analytically and in illustra-
tions, by plots, in the following sequence: (§ 5) first the solutions in the neighbourhood
of the free stream, which may consist of propagating waves (complex, with amplitude
and phase) or surface modes (real); (§ 6) then the pair of solutions in the neighbour-
hood of the critical layer, which has a logarithmic singularity, leading to a jump of
the wave field; the third set of solutions, specifying the behaviour of the wave field,
in the region of vorticity, towards the wall is given in a future paper on the extended
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Figure 4. Flow regions where each pair of solutions converges, for each of four frequency ranges.
Redundant solutions are indicated in brackets, to emphasize the others, i.e. the minimum set
which covers the whole flow region.

hypergeometric equation and functions. The preceding solutions, which are plotted
for rigid or impedance wall conditions (§ 7), assume that the critical layer either does
not exist (i) or lies in the boundary layer (ii); the remaining possibility is for the
critical level to lie in the free stream (iii), in which case the solution of the wave
equations is simplest, namely is specified by Bessel functions (§ 8), because the three
singularities coalesce to two.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


On the acoustics of an exponential boundary layer 2353

5. Propagating and surface waves

It has been shown how the three pairs of solutions of the wave equation (§ 3) can be
used to specify the wave field over the whole flow region, for various combinations
of parameters and boundary conditions. The more detailed discussion of each of
the pairs of solutions starts with those in the neighbourhood of the free stream,
which are specified by (2.14 b), (2.17 a), (2.19 b) where g satisfies (2.20); the latter,
on substitution of (2.23), leads to the recurrence formula

(n+ σ + 1)(n+ σ + 1 + 2ϑ)an+1

= {(n+ σ)(n+ σ − 2 + 2ϑ) + 2(Λ2 − ϑ)}an − 3Λ2an−1 + Λ2an−2. (5.1)

Setting n = −1, and noting that a−1 = a−2 = a−3 = 0 because these terms do
not exist in (2.23), yields σ(σ + 2ϑ)a0 = 0; now if a0 = 0, then all an = 0, and a
trivial solution is obtained. Thus a0 6= 0, leading back to the indicial equation (2.24),
whose roots are σ = 0,−2ϑ. In the exceptional case when 2ϑ = m is an integer, one
particular integral has a logarithmic singularity (this is dealt with in the future
paper); when −2ϑ is not an integer, the coefficient of an+1 in (5.1) never vanishes,
leading to the recurrence relations

(n+ 1)(n+ 1± 2ϑ)a±n+1 = {(n± 2ϑ)(n− 2)± 2ϑ+ 2Λ2}a±n − 3Λ2a±n−1 + Λ2a±n−2,
(5.2)

where the upper sign applies for σ = 0, and the lower sign for σ = −2ϑ. Since a±0 6= 0
is arbitrary, it can be incorporated in the arbitrary constants of integration C± in
(3.20 a), i.e. one may set a±0 = 1. The next coefficients are given by

(1± 2ϑ)a±1 = 2(Λ2 ∓ ϑ), (5.3 a)

4(1± ϑ)a±2 = (2Λ2 − 1)a±1 − 3Λ2, (5.3 b)

3(3± 2ϑ)a±3 = 2(Λ2 ± ϑ)a±2 − 3Λ2a±1 + Λ2, (5.3 c)

and the remaining coefficients a±n , with n = 4, 5, . . . , follow from (5.2).
Substituting (2.23) with σ = 0,−2ϑ in (2.17 a), (2.14 b) specifies the linearly inde-

pendent particular integrals

P±(y; k, ω) = e∓ϑy/L
∞∑
n=0

a±n

{
e−y/L

1−Ω
}n
, (5.4)

whose linear combination (3.20 a) is the general integral of the wave equation (2.13)
for the range of values of y indicated in (4.11). For the purposes of plotting, the
distance from the wall y is normalized to the boundary-layer thickness L, namely

Y ≡ y/L, (5.5 a)
P±(Y ) ≡ P±(y; k, ω), (5.5 b)

and the wave fields are given by

P±(Y ) = e∓ϑY
{

1 +
∞∑
n=1

a±n (1−Ω)−ne−nY
}
, (5.6)

which converge in the whole flow region flow 0 < Y <∞ for Ω > 2 in (4.11). When
Ω < Ω∗ in (2.30), then ϑ is real in (2.19 b), and only one solution is bounded as
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y →∞, namely P−(Y ), which represents surface waves, since

Ω < 1 +
1
M
, lim

Y→∞
P−(Y ) = 0. (5.7)

In the opposite case σ is imaginary, and if σ = i|σ| then P+ is an upward and P− a
downward propagating wave, and the solutions are complex conjugates:

Ω > 1 +
1
M
, P+(Y ) = P ∗−(Y ) ≡ P (Y ); (5.8)

for example, standing modes can be obtained by setting C+ = C− in (3.20 a):

C+ = C−, P (y; k, ω) = 2C+ Re{P (Y )}. (5.9)

In the case (5.7) of surface waves, the plot concerns the logarithm of the acoustic
pressure normalized to the value at the wall

Q(Y ) = log{P−(Y )/P−(0)}, 0 6 Y 6 5, (5.10)

versus distance from the wall, for five shear-layer thicknesses. In the case (5.8) of
propagating waves,

Q±(Y ) = log{P±(Y )/P±(0)} = log |P±(Y )/P±(0)|+ i{argP±(Y )− argP±(0)},
(5.11)

there are separate plots for the real part, which is the logarithm of the ratio of ampli-
tudes, and the imaginary part, which is the phase difference between an arbitrary
position and the wall.

The three independent parameters in the present problem are the dimensionless
frequency Ω (2.12 b) and wavenumber K (2.16 b) and the Mach number (2.29):

Λ = (Ω − 1)MK, (5.12 a)

ϑ = K
√

1− (Ω − 1)2M2, (5.12 b)

and all other parameters, e.g. Λ (2.16 a) and ϑ (2.19 b) are expressible in terms of these
(5.12). The reference case is taken as the following values of the three parameters:

K = 5, (5.13 a)
Ω = 5, (5.13 b)
M = 0.25, (5.13 c)

namely (i) a compactness 5 = K = kL = 2πL/λ such that the horizontal wavelength
λ/L = 2

5π = 1.257 is of the order of the thickness of the boundary layer; (ii) a
frequency Ω = 5 for which there is no critical layer Ω > 1 and the solution (5.6)
converges Ω > 2 over the whole flow region; and (iii) a low Mach number such that
ϑ = 0 in (5.12 b), corresponding to the borderline between oscillatory and evanescent
sound fields in the free stream. Each of the parameters is next varied in turn, starting
with the compactness:

Ω = 5, M = 0.25, K = 1, 5, 10 (5.14)

(as shown in figure 5). The logarithm of the sound field tends to a constant value
in the free stream, regardless of the value of K, because (Ω − 1)M = 1 and thus
ϑ = 0 in (5.12 b), corresponding to the borderline between asymptotically evanescent
and oscillatory modes. The sound field does not vary much over the thickness of the
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Figure 5. Logarithm of the acoustic pressure normalized to the wall value (5.10) versus dimen-
sionless distance from the wall (5.5 a) for a surface wave. The dimensionless frequency and Mach
number are fixed, and three dimensionless wavenumbers are considered.

boundary layer, the change between the wall and the free stream being a modest
increase for large values of compactness. Significant sound level changes occur only
at the zeros of the mode shape function, which are more closely spaced for larger
K. In the case K = 1 there are no zeros of the mode shape function, because it
is monotonic or evanescent, and the acoustic field is nearly uniform. In the case
K = 5 there are two zeros, in the range of distances from the wall, and a very small
amplitude increase towards the free stream. In the case K = 10 two more zeros, for
a total of four, appear in the same range, and the amplitude increase towards the
free stream is comparatively larger than before, but still small in absolute terms.
Clearly, for larger wavenumbers, the zeros or nodes of the mode shape function are
more closely spaced, on the scale of the thickness of the boundary layer.

The exponential rate of decay of the evanescent acoustic field in the free stream
is determined by ϑ2 < 0 in (5.12 b), and increases for increasing frequency, as shown
in figure 6, where the values

K = 5, M = 0.25, Ω = 2, 3, 4 (5.15)

are taken, namely the last below (5.13 b). The logarithm of the ratio of amplitudes
decays linearly in the free stream, corresponding to the leading asymptotic term
logP+ ∼ ϑY in (5.6); therefore, for a given acoustic pressure at the wall, the acoustic
field is smaller in the free stream as the frequency increases. Since in figure 6 the
frequency has been reduced relative to (5.13 b), there are evanescent waves; if instead
the frequency is increased,

K = 5, M = 0.25, Ω = 5, 7, 10, (5.16)

there are oscillatory waves in the free stream, needing separate plots for the logarithm
of the ratio of amplitudes (difference of phases) in figure 7a (figure 7b). The amplitude
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Figure 6. As figure 5, but with smaller frequency.

(figure 7a) is nearly constant and there are no zeros of the mode shape function for
frequencies higher than the reference value Ω = 5; the phase increases with distance
almost linearly, and faster for a higher frequency, e.g. the slope is larger for Ω = 10
than for Ω = 7 (figure 7b). These are propagating waves, and in the borderline case
Ω = 5 to evanescent modes, the situation is quite different: (i) there are two zeros
of the mode shape function, and a modest increase in amplitude in the free stream
compared with the wall (figure 7a), as shown before (figure 5); (ii) there are no phase
changes, since the mode is evanescent, except for phase jumps of ±π rad or ±180◦
corresponding to changes of sign across the zeros or nodes, leading to (figure 7b) a
constant phase π between the two nodes, and a zero phase before the first, and after
the second π − π = 0. Proceeding to the effects of the free-stream velocity, since in
the case of non-homentropic mean flow the present theory is restricted to low Mach
numbers, M2 � 1, the values

K = 5 = Ω, M = 0.1, 0.2, 0.3, (5.17)

are chosen for illustration in figure 8. Again there are surface waves, with amplitude
decay away from the wall, the effect being smaller as the Mach number decreases. For
homentropic mean flow the theory could be applied to an arbitrary Mach number.

6. Absorption at the critical layer

The next pair of solutions, in the neighbourhood of the critical layer, is specified by
the differential equation (3.2), in terms of the variable

ξ = 1− e−y/L

1−Ω = 1− exp
{
yc − y
L

}
, (6.1)
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Figure 7. As figure 5, but with increased frequency, implying propagating waves, for which (5.11)
the logarithm of the amplitude, normalized to the wall value, is shown in (a), and the phase
shift relative to the wall value is shown (in degrees) in (b).

where use was made of (3.1 a), (2.14 a), (2.12 a). The substitution of the power series
solution (3.5) leads to the recurrence formula

(n+ σ + 1)(n+ σ − 2)bn+1 = {(n+ σ)(n+ σ − 2ϑ)− 2ϑ}bn + Λ2(bn−1 + bn−2)
(6.2)

for the coefficients. Setting n = −1 yields the indicial equation (3.6), which has roots
σ = 0, 3, differing by an integer. The highest root σ = 3, gives rise to the solution

h1(ξ) = ξ3
∞∑
n=0

bn(3)ξn, (6.3)

where the coefficients of bn+1 in

(n+ 4)(n+ 1)bn+1 = {(n+ 3)(n+ 3− 2ϑ)− 2ϑ}bn + Λ2(bn−1 + bn−2) (6.4)
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Figure 8. As figure 5, with reduced free-stream Mach number.

never vanish, e.g.
4b1 = 9− 8ϑ, (6.5 a)

10b2 = (16− 10ϑ)b1 + Λ2, (6.5 b)

18b3 = (25− 12ϑ)b2 + Λ2b1 + Λ2, (6.5 c)
where b0 was set to unity b0 = 1 because it can be incorporated in the arbitrary con-
stant c1 in (3.19 a). The lowest root σ = 0 gives rise to a solution with a logarithmic
singularity, of which the leading term was considered previously (3.8); this solution
can be obtained by the Frobenius–Fuchs method (further details will appear in a
future paper).

The first plots concern the solution which vanishes at the critical layer, namely
(2.14 b), (2.17 a), (3.1 b), (3.5), (6.1)

P1(y; k, ω) = e−ϑy/L
∞∑
n=0

bn

{
1− e−y/L

1−Ω
}n+3

. (6.6)

It is convenient to introduce the location of the critical layer in dimensionless form:
Yc ≡ yc/L = − log(1−Ω), P1(Y ) = P1(y; k, ω), (6.7)

so that the acoustic pressure is given by

P1(Y ) = e−ϑY
∞∑
n=0

bn

{
1− e−Y

1−Ω
}n+3

= e−ϑY
∞∑
n=0

bn(1− eYc−Y )n+3. (6.8)

The value at the wall (6.9 a)

P1(0) =
∞∑
n=0

bn

(
1− 1

Ω

)−n−3

, (6.9 a)

Q1(Y ) = log
{
P1(Y )
P1(0)

}
, (6.9 b)
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Figure 9. As for figure 5, using solution vanishing at the critical layer, and a much smaller
fixed frequency: the same low Mach number, and three values of wavenumber.

Figure 10. As figure 9, changing the Mach number.

is used for normalization (6.9 b) in figures 9–12. In the case Ω < 1
2 , this solution

covers the whole flow region, because condition (3.19 b) is met for all 0 < y <∞, as
indicated in (4.11).

The reference case is taken for the same values of dimensionless wavenumber and
Mach number as before (5.13 a), (5.13 c):

K = 5, Ω = 0.2, M = 0.25, (6.10)

with a much smaller dimensionless frequency, in the range |Ω − 1|M = 0.2 < 1 of
surface waves. The effect of changing values of wavenumber is shown in figure 9:

K = 1, 5, 10, Ω = 0.2, M = 0.25. (6.11)
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Figure 11. As figure 9, reducing the frequency.

Figure 12. As figure 9, increasing the frequency.

The zero of the mode shape function occurs always at the same position, since the
location of the critical layer (2.12 a) is unaffected by the wavenumber; as the latter
increases the acoustic pressure decays away from the wall with a larger slope. In
figure 10 the effect of free-stream Mach number

K = 5, Ω = 0.2, M = 0.1, 0.2, 0.3 (6.12)
always in the low Mach number range, is shown to be small with regard to the
amplitude decay away from the wall; it does not affect the location of the zero of
the mode shape function. The latter depends only on the dimensionless frequency,
which is decreased in figure 11:

K = 5, Ω = 0.05, 0.10, 0.15, M = 0.25, (6.13)
and increased in figure 12:

K = 5, Ω = 0.3, 0.4, 0.5, M = 0.25, (6.14)
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Figure 13. As figure 5, for solution which is finite at the critical layer. Same low frequency as
in figure 9; Mach number also fixed. Three values of wavenumber considered.

while remaining within Ω 6 1
2 . In both cases, as frequency increases, the zero of the

mode shape function moves away from the wall. The amplitude decay away from the
wall has a similar slope for all frequencies, but the absolute value at each position
decreases as frequency increases.

The other solution in the neighbourhood of the critical layer involves a logarith-
mic singularity, as is documented elsewhere, e.g. for internal (Booker & Bretherton
1966), instability (Drazin & Reid 1981) and hydromagnetic (Eltayeb 1977) waves.
The reference case taken is

K = 2, Ω = 0.2, M = 0.25, (6.15)

for the solution (3.8), with logarithmic singularity at the critical level log ξ dominated
by the triple zero ξ3, so that P2 ∼ 0(1) is finite there. The plots concern the logarithm
of the ratio of amplitude at position Y to the amplitude at the wall:

Q2(Y ) = log
{
P2(Y ; k, ω)
P2(0; k, ω)

}
, (6.16)

versus the dimensionless distance from the wall (5.5 a). The wavenumber is varied
first:

K = 1.5, 2, 2.5, Ω = 0.2, M = 0.25, (6.17)

in figure 13, showing that the amplitude tends, in the free stream, to a constant
asymptotic value, which is lower for a smaller wavenumber. The amplitude plot is
not a monotonic function of distance, since there is a local maximum at the critical
layer. Towards the free stream there are no more local maxima, i.e. just a decay, which
is more pronounced for a smaller wavenumber. The local maximum at the critical
layer is higher than the value at the wall for K = 2.5 and smaller for K = 2, 1.5,
and in all cases there is a local minimum in between. In the case K = 2.5 there
is a further local maximum, between the local minimum and the wall, because the
amplitude initially increases away from the wall. Next the Mach number is given the
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Figure 14. As figure 13, changing the Mach number.

Figure 15. As figure 14, reducing the frequency.

values

K = 2, Ω = 0.2, M = 0.1, 0.2, 0.3, (6.18)

showing in figure 14 that the amplitude is slightly smaller for a lower Mach number,
but follows a similar evolution, starting with decay away from the wall, followed by
increase towards the local maximum at the critical layer, and a final decay towards
a constant asymptotic value in the free stream. Varying the frequency,

K = 2, Ω = 0.15, 0.2, 0.25, M = 0.25, (6.19)

as shown in figure 15, has a broadly similar effect to varying wavenumber (in fig-
ure 13), except that the amplitudes for lower frequencies can cross, while still tending
to a constant asymptotic amplitude in the free stream, which is smaller for a lower
frequency.
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7. Rigid or impedance walls

In general, the wave field satisfying a pair of independent and compatible boundary
conditions is a linear combination of pairs of solutions of the type considered before;
namely outward P+ or inward P− propagating waves in the free stream, vanishing
P1 or finite P2 waves near the critical layer, or the wave fields P∗ and P∗∗ below the
critical layer; in some cases, in order to obtain the wave field over the whole flow
region, analytic continuation between pairs of solutions may be necessary (4.11),
e.g. across the critical layer. In the particular case when the critical layer lies in the
free stream, only one pair of solutions is needed; the reason is that two of the three
singularities of the wave equation coincide, so that only two singularities are left,
one at the origin and one at infinity, and the radius of convergence is infinite. In all
these cases, the question arises of the determination of the constants of integration,
specifying the linear combination of two particular solutions, which satisfies a given
pair of compatible and independent boundary conditions. Thus, rather than plot-
ting more of the pairs of particular integrals (P±, P1,2 and P∗,∗∗) which, by linear
combination and analytic continuation, form general solutions, one may proceed to
illustrate the determination of the constants of integration. This can be done for
any case, e.g. when a critical layer does not exist, and a linear combination (3.20a)
of outward P+ and inward P− propagating waves, specifies the sound field over the
whole flow region:

P (Y ) = C+P+(Y ) + C−P−(Y ), (7.1)
with P±(Y ) given by (5.6). The boundary conditions taken are a given wave ampli-
tude at the free stream (7.2 a),

P (Y =∞) = P∞, (7.2 a)
dP
dY

∣∣∣∣
Y=0

= iρω(L/Z)P (0), (7.2 b)

and an impedance boundary condition (4.2 b) at the wall (7.2 b). The latter condition
(7.2 b) can be written in terms of dimensionless parameters (7.3 a):

P ′(0) = i(ΩKM/Z̄)P (0), (7.3 a)

Z̄ ≡ Z/ρc, (7.3 b)
where use was made of the dimensionless frequency (2.12 b), wavenumber (2.16 b),
besides the Mach number (2.29) and dimensionless or specific impedance (7.3 b). The
case of a rigid wall Z̄ =∞, and sound of constant amplitude in the free stream, leads
to

P (∞) = P∞, P (0) = 0 (7.4)
as boundary conditions.

Substituting these boundary conditions in (7.1), together with (5.6) and

P ′±(Y ) = e∓ϑY
{
∓ϑ+

∞∑
n=1

(−n∓ ϑ)a±n (1−Ω)−ne−nY
}
, (7.5)

implies that the coefficients C± are specified by the linear inhomogeneous system of
equations[

P+(∞) P−(∞)
P ′+(0)− i(ΩMK/Z̄)P+(0) P ′−(0)− i(ΩMK/Z̄)P−(0)

] [
C+
C−

]
=
[
P∞
0

]
(7.6)
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Figure 16. Logarithm of acoustic pressure, normalized to the value at Y = 10, versus dimen-
sionless distance from a rigid wall. Fixed frequency and Mach number, and three values of
wavenumber.

for an impedance wall, simplifying to

Z̄ =∞,
[
P+(∞) P−(∞)
P ′+(0) P ′−(0)

] [
C+
C−

]
=
[
P∞
0

]
(7.7)

for a rigid wall. For practical purposes the free stream Y =∞ is replaced by Y = 10,
and this determines the range of distances from the wall (7.8 a):

0 6 Y 6 10, (7.8 a)

Q(Y ) ≡ log
{
P (Y )
P∞

}
, (7.8 b)

over which is plotted the sound field normalized to the value in the free stream (7.8 b).
Thus figures 5–15 contain plots of sound-field ‘components’, and figures 16–23 show
plots of the total wave field, which is their linear combination. For propagating
waves, the real and imaginary parts of (7.8 b) are plotted separately, corresponding,
respectively, to the logarithm of the ratio of amplitudes at position Y and the free
stream (7.9 a):

Re(Q) = log |P (Y )/P∞|, (7.9 a)
Im(Q) = arg(P )− arg(P∞), (7.9 b)

and the phase shift (7.9 b) between the free stream and position Y .
The first set of plots (figures 16–19) concerns a rigid wall, and takes as the baseline

case

Z̄ =∞, K = 1, Ω = 4, M = 0.25. (7.10)

Varying first the wavenumber,

Z̄ =∞, K = 1, 5, 10, Ω = 4, M = 0.25, (7.11)
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Figure 17. As figure 16, for three values of Mach number.

Figure 18. As figure 16, reducing the frequency.

shows (figure 16) that the amplitude decays faster towards the wall for a larger
wavenumber. Varying the Mach number,

Z̄ =∞, K = 1, Ω = 4, M = 0.1, 0.2, 0.3, (7.12)

shows (figure 17) a faster decay of amplitude towards the wall, for a smaller Mach
number; a zero of the mode shape function occurs in the range (7.8 a) for M = 0.3,
but not for lower values M = 0.1, 0.2. Reducing the frequency,

Z̄ =∞, K = 1, Ω = 2, 3, 4, M = 0.25, (7.13)

leads (figure 18) to a faster decay of amplitude away from the free stream, towards the
wall; for low frequencies the curves are not monotonic, and an increase in amplitude
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Figure 19. As figure 16, with increased frequency, leading to propagating waves, with logarithm
of the amplitude, normalized to value at free stream in (a), and phase shift from free stream in
(b).

near the wall can be observed for Ω = 2. For M = 0.25 there are surface (or non-
propagating) waves, for real ϑ in (5.12 b), i.e. all the plots in figures 16–18. If the
frequency is increased,

Z̄ =∞, K = 1, Ω = 6, 8, 10, M = 0.25, (7.14)

there are propagating waves, whose amplitudes (figure 19a) have larger variations
for larger frequencies; the zeros of the mode shape functions correspond (figure 19b)
to 180◦ (or π rad) phase jumps, otherwise the phase varies little, in the ‘plateaux’
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Figure 20. As figure 16, replacing rigid wall by impedance wall.

Figure 21. As figure 17, replacing rigid wall by impedance wall.

between the phase jumps. Also the phase jumps in figure 19b are smoother than
those in figure 7b.

Consider next an impedance wall, for the same baseline case (7.10) as before:

Z̄ = 0.1, K = 1, Ω = 4, M = 0.25. (7.15)

Varying the wavenumber,

Z̄ = 0.1, K = 1, 5, 10, Ω = 4, M = 0.25, (7.16)

shows that (figure 20) the amplitude decays from the free stream to the wall, faster
for a larger wavenumber, with slightly smaller values at the wall than for the rigid
wall (figure 16); the impedance wall causes an amplitude reduction in the last fraction
of shear-layer thickness, namely the curvature of the amplitude curve near the wall
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Figure 22. As figure 18, replacing rigid wall by impedance wall.

is positive for a rigid wall (figure 16) and negative for an impedance wall (figure 20).
The effect of varying the Mach number,

Z̄ = 0.1, K = 1, Ω = 4, M = 0.1, 0.2, 0.3, (7.17)

has a similar (figure 21) interpretation, with a smaller amplitude for a smaller Mach
number. Reducing the frequency,

Z̄ = 0.1, K = 1, Ω = 2, 3, 4, M = 0.25, (7.18)

shows (figure 22) (i) a faster decay of amplitude towards the wall for lower frequen-
cies; (ii) an amplitude increase near the wall for low frequencies; (iii) an amplitude
decrease very near the impedance wall relative to the rigid wall. Increasing the fre-
quency,

Z̄ = 0.1, K = 1, Ω = 6, 8, 10, M = 0.25, (7.19)

leads to propagating waves, which have larger amplitude fluctuations as the frequency
increases (figure 23a), and also as impedance increases (cf. rigid wall in figure 19a).
The phase jumps at the zeros of the mode shape functions are sharper, with flatter
‘plateaux’ in between for the impedance (figure 23b) relative to the rigid (figure 19b)
wall.

8. Critical layer in the free stream

The process of linear combination of pairs of solutions to satisfy boundary conditions
works equally well with or without the critical layer, whether or not one needs one,
two or three pairs of solutions (P±, P1,2 and P∗,∗∗) and their analytic continuation.
In the case of a critical layer in the free stream, since two singularities coincide,
only two singularities remain, and thus only one pair of solutions is needed. This
pair of solutions is different from the preceding solutions, because the coalescence of
two regular singularities (the critical layer and the free stream) leads to one regular
singularity, leaving only one other singularity, which remains irregular. As is shown
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Figure 23. As figure 19, replacing rigid wall by impedance wall.

next, the solution is simpler in this particular case. The preceding discussion (in § 2
to § 7) does not apply when the critical layer lies in the free stream Ω = 1, because in
this case the variable ζ =∞ in (2.14 a), and all the variables in the Kleinian group
(3.15) are zero or infinity. It turns out that this case is particularly simple, and all
instances can be discussed briefly including those involving logarithmic and essential
singularities (which are deferred to a future paper in the general case), because this
is one of the many problems solvable in terms of Bessel functions (Watson 1944;
Erdelyi 1953; Abramowitz & Stegun 1965; Luke 1975; Campos 1994; Campos & Gil
1995). When Ω = 1, the general wave equation (2.13), simplifies to

P ′′ + (2/L)P ′ + (M2e−2y/L − 1)k2P = 0. (8.1)
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The change of independent variable,

ζ = Me−y/L, P (y; k, kV ) = f(ζ) ≡ R(y;K,KM), (8.2)

places the critical layer in the free stream y =∞ at the origin ζ = 0, and transforms
(8.1) to

ζ2f ′′ − ζf ′ + (ζ2 − 1)K2f = 0, (8.3)

which differs from a Bessel equation only in the sign of the coefficient of f ′. The
change of dependent variable (8.4),

f(ζ) = ζg(ζ), (8.4)

leads to a Bessel equation

ζ2g′′ + ζg′ + [K2ζ2 − (1 +K2)]g = 0, (8.5)

of variable Kζ and order
√

1 +K2, whose solution is

g(ζ) = S√1+K2(Kζ), (8.6)

where S is a linear combination of linearly independent Bessel functions.
For example, in the exceptional case where the order is an integer n =

√
1 +K2 >

1, the solution is a linear combination of Bessel Jn and Neumann Gn functions of
order n (Watson 1944):

n =
√

1 +K2, Sn(Kζ) ≡ C1Jn(Kζ) + C2Gn(Kζ), (8.7)

and the acoustic pressure is given by

R(y;
√
n2 − 1,M

√
n2 − 1)

= e−y/L{C1Jn(
√
n2 − 1Me−y/L) + C2Gn(

√
n2 − 1Me−y/L)}. (8.8)

Near the free stream y � L, the variable is small, e−y/LKM � 1, and use of the
approximations (Abramowitz & Stegun 1965)

ξ ≡ ζ
√
n2 − 1, (8.9 a)

Jn, Gn(ξ) = {(1
2ξ)

n,−(1/π)(1
2ξ)
−n}{1 +O(ξ2)}, (8.9 b)

in the acoustic pressure shows that the sound field in the free stream is given by

R(y;
√
n2 − 1,M

√
n2 − 1) ∼ C2

π
(1

2M
√
n2 − 1)−ne(n−1)y/L. (8.10)

Note that for n, the lowest positive integer n = 1, there is no longitudinal propagation
K = 0, and for larger values n = 2, 3, . . . , then K > 0 so that the waves are
propagating; for large n,

n2 � 1, K =
√
n2 − 1 ∼ n− 1/2n+O(n−3) (8.11)

corresponding to the ray limit K2 � 1, the pressure field scales as

R(y, n,Mn) ∼ C2

π
(1

2nM)−neny/L. (8.12)

Note that in the present case Ω = 1 of the critical layer in the free stream, it follows
from (5.12 b) that ϑ = ±K; in the ray limit of large K ∼ n, or n = ∓ϑ, the acoustic
pressure (8.12) agrees with (2.25).
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In the general case, when the order is not an integer, the pressure field is a linear
combination of Bessel functions of orders ±√1 +K2, namely (1 +K2 6= n2)

P (y; k, kV ) = e−y/L{C1J√1+K2(KMe−y/L) + C2J−√1+K2(KMe−y/L)}. (8.13)
Near the free stream the variable is small, and using (8.9 a), namely

ξ = Kζ, Jϑ(ξ) ∼ (1
2ξ)

ϑ{1 +O(ξ2)}, (8.14)
yields

R(y;K,KM) ∼ C2(1
2KM)

√
1+K2

e(
√

1+K2−1)y/L. (8.15)

In the ray limit K2 � 1, this simplifies to
R(y;K,KM) ∼ C2(1

2KM)KeKy/L, (8.16)
which again agrees with (8.12) and (2.25). Since the Bessel equation (8.5) has a
regular singularity at ζ = 0 in the free stream y = +∞, and an irregular one ζ =∞
below the wall y = −∞, the solutions in terms of Bessel (8.13), Neumann (8.8) and
Hankel (8.17) functions,

R(y;K,KM) = e−y/L{C+H
(1)√

1+K2(KMe−y/L) + C−H
(2)√

1+K2(KMe−y/L)}, (8.17)

have an infinite radius of convergence, and cover the whole flow region 0 < y <∞.
The plots concern the logarithm of the acoustic pressure normalized to the wall

value:

W1,2(Y ) = e−Y
H

(1,2)√
1+K2(KMe−Y )

H
(1,2)√

1+K2(KM)
, (8.18 a)

W (Y ) ≡ log{W1(Y )}, (8.18 b)
versus distance from the wall, for five boundary-layer thicknesses 0 6 Y ≡ y/L 6 5.
The real (imaginary) part, i.e. the logarithm of amplitudes (phase difference) applies
to both wave components

Re(W ) = log |W1| = log |W2|, (8.19 a)
Im(W ) = arg(W1) = − arg(W2), (8.19 b)

and is plotted on the tops of figures 24 and 25, respectively, for Mach numbers
(8.20 a)

M = 0.15, 0.3, (8.20 a)
K = 0.5, 1, 2, 5, (8.20 b)

in each case for the same four values of wavenumber (8.20 b). For the lower Mach
number (figure 24), the amplitude (a) decays exponentially towards the free stream,
being smaller for a larger wavenumber; the increase of the latter corresponds to larger
phase changes (b), which tend to a constant in the free stream. The same effects are
observed (figure 25), in a more pronounced form, for higher Mach numbers, both as
concerns amplitude (a) and phase (b).

Since the preceding solution is valid for y < 0, it can be used to investigate the
properties of the acoustic pressure, in a region of increasing vorticity of the mean
flow. For all values of K the result (8.17) in the asymptotic form

H(1,2)
ν (ξ) ∼

√
2
πξ

exp{±i(ξ − 1
2νπ − 1

4π)}{1 +O(ξ−1)} (8.21)
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Figure 24. Logarithm of amplitude normalized to the wall (a) and phase shift relative to wall
value (b), versus dimensionless distance from the wall, for acoustic pressure of an outward
(inward) propagating wave, in the case of a critical layer at the free stream. Fixed Mach number
and four values of wavenumber.

can be used to investigate the mathematical nature of the essential singularity of the
solution

R(y;K,KM) ∼ e−y/2LA exp{±iKMe−y/L −B}, (8.22)

where

A ≡ C±
√

(2/πKM), (8.23 a)

B ≡ 1
2π(
√

1 +K2 − 1
2). (8.23 b)
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Figure 25. As figure 24, with same wavenumbers, and larger, but still low Mach number.

As y → −∞ the solution does indeed have an essential singularity:

R(y;K,KM) ∼ Ae−B
∞∑
n=0

{(±iKM)n/n!}e−(n+(1/2))y/L, (8.24)

because of the unbounded phase oscillation. The amplitude has a simple exponential
form:

|R(y;K,KM)| ∼ A exp
(
−B − y

2L

)
. (8.25)

Another physical situation in whose connection an essential singularity occurs is
sound propagation in a nozzle with power-law cross-section containing a low Mach
number mean flow (Campos 1987b); in this case the vertex is outside the physical
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Figure 26. Logarithm of wave field normalized to value at the wall, for Bessel function solution,
in the case of critical layer at the free stream, with plot extended below the wall, into the region
of strong vorticity, approaching the essential singularity.

Figure 27. As figure 26, for a Neumann instead of a Bessel function.

region of interest, and it is an irregular singularity of the wave equation; the solution
of the acoustic wave equation has an essential singularity for the phase, but only
an algebraic one for the modulus. In a future paper the nature of the essential
singularity for Ω 6= 1, as a particular case of the extended hypergeometric equation
is discussed. The present paper is concluded, with an illustration of the behaviour of
the solution (8.17), in an extended region, up to five shear-layer thicknesses below
the wall, to show the approach towards the essential singularity at Y → −∞, ζ →∞.
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The Bessel J and Neumann G functions are plotted separately, normalized to their
value at the wall,

F (Y ) ≡ e−Y
{
J√1+K2(KMe−Y )
J√1+K2(KM)

}
, (8.26)

G(Y ) ≡ e−Y
{
G√1+K2(KMe−Y )
G√1+K2(KM)

}
, (8.27)

respectively, in figures 26 and 27, for five shear-layer thicknesses on either side of the
wall (8.28 a):

−5 6 Y ≡ y/L 6 +5, (8.28 a)
K = 0.5, 2, 5, (8.28 b)

and three dimensionless wavenumbers (8.28 b) and Mach number n = 0.3. In all cases
the monotonic decaying waveform in the flow region changes to an oscillation below
the wall; as the wavenumber increases, there are more oscillations per unit length and
the amplitude decreases for F (figure 26) and increases for G (figure 27). The trend
towards unbounded phase, as the essential singularity is approached, is apparent.
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